Summary

International workshop on strong *cor*relations and angle-resolved *p*hotoemission spectroscopy

Experimental part

Jörg Fink

Leibniz Institut für Festkörper- und Werkstoffforschung Dresden

Hamburg

PES

COR

ARPES meets theory

CORPES is not a corpse

It's alive and kicking

Advances in spectroscopy techniques I

Light sources

Laser 0.3-2 meV $\Delta k \uparrow hv=6 eV$

SR beamlines $\Delta E \sim 1 \text{ meV up to hy} = 100 \text{ eV}$

SR SX beamlines $\Delta E \sim 100 \text{ meV}$ COR?

 $\lambda \uparrow \Delta k \sim 1/\lambda$ resonant ARPES depth profile by standing waves

SR HX beamlines HAXPES COR?

 $\lambda \uparrow \uparrow \Delta E \sim 100 \text{ meV}$ huge phonon excitations for light elements.

HHG hv< 100 eV Δ E= 100 meV

XFEL $\Delta t = 2-100 \text{ fs}$ SASE3 hv=250- 3000 eV Repetition rate 30 000 p/sec (space charge \downarrow)

Advances in spectroscopy techniques II

Analyzers

Wide angle detection $\Delta E = 0.3 \text{ meV}$

Time of flight analysers $\Delta E = 5 \text{ meV}$

Spin resolved ARPES $\Delta E = 5 \text{ meV}$

Time resolved ARPES

 $h\nu$ = 6 – 43 eV Δ E~80 meV Δ t~50 fsec Σ from t-dependend relaxation, hope to separate e and ph relaxation processes, non equilibrium phases, THz excitations of specific phonons

inverse ARPES

∆E~300 meV, with gratings better but intensity problems 2 photon ARPES - intensity problems

Advances in spectroscopy techniques III

Sample environment and preparation

T=1 K (Kondo systems, thermal broadening \downarrow)

PLD MBE artificial structures

(tr)-XAS, RSXS, RIXS, IR, VIS, Raman

Low dimensional (0D, 1D) systems

Mn, Fe, Co, and NI on Ag(100)

Higher energy features which decrease with filling of the 3d shell.

Non-monotonic spectral weight near E_F. Hund's exchange J can explain evolution.

Li_{0.9}Mo₆O₁₇ system in which correlation effects are determined not by the Coulomb interaction but by the low dimensionality.

ARPES T>30 K TLL behavior, 30K>T>1.5K unclear 1D-3D transition.

Interchain interaction is important.

On the other hand, LDA band structure can explain many features.

Cuprates

only 2 experimental talks on cuprates

TDoS measurements of the superconducting gap and pair-breaking fluctuations.

Non-equilibrium optical spectroscopy
Disentanglement of the electronic and the phononic
Contributions to the Eliashberg function.

d-electron oxides

SrVO₃ with the 3d¹ configuration. A bench-mark system.

Impressive ARPES study with an evaluation of the complex self-energy which causes kinks similar to the cuprates. High energy kink (waterfall?) was interpreted in terms of high-energy (0.7 eV) e-e interaction.

Ferropnictides/chalchogenides

8 experimental talks on iron based SCs

Spectacular: Tc= 65 K in a monolayer of FeSe/STO ARPES has developed into analytical materials-research tool.

Pseudogap in the underdoped region, possibly related to the nematic phase. Gap 30 meV => not precursor.

P (even in overdoped samples) > Co > K

Clear evidence for a coupling to magnetic resonance mode below Tc Similar to the cuprates.

Ru replacement of Fe does not change the electronic structure Magnetic dilution could lead to a suppression of AF order => SC

Topological insulators

8 experimental talks on TI

"There is so much out that I am getting overwhelmed" J.A.

Bi₂Se₃. Polarization-dependent ARPES: the topological surface states are characterized by layer dependent entangled spin-orbit effects which becomes apparent through quantum interference effects. This solved the puzzle that in S-ARPES polarizations are observed between 20 and 85 % instead of 100 %.

Graphene

Only 1 experimental talks on graphene

Band structure study of a bilayer of graphite.

Native imperfection – distribution of twists.

New electronic structure of massive and massless fermions.

f-electron systems

"Unbelievable data" on YbRh₂Si₂ => crystal field splitting, hybridization of the 4f states with d states.

Longstanding puzzle of the finite low-T resistivity in the Kondo insulator SmB₆ seems to be solved: surface conductivity possibly due to a topological insulator state.

Impressive data on the hidden order in URu₂Si₂. Precursor to the superconducting state??? ARPES indicates a symmetry change. Not an AF phase, CDW, structural phase.

Surfaces, interfaces, heterostructures

Hetero structure LaAlO₃/SrTiO₃, 2D metallic and superconducting interface.

Impressive combination of X-ray spectroscopies => no potential gradient is formed. O vacancies at the surface are important for the formation of the metallic layer. Fermi surface is detectable.

2D electron gas in O deficient SrTiO₃. ARPES: various bands due to a different potential on the surface layers. Unconventional Rashba-like spin splitting of the Ti d-electron sub-band ladder.

ARPES on a 2D buried delta-layer of P doped Si. Detection of the deeply buried layer is possible by resonance enhancement effects.

Sub-monolayer metal atom layers on semiconductors: Sn/Si, Au/Ge. Magnetic order due to a formation of a Mott insulator. Unconventional Rashba effect.

Thank you